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Monotone Dynamical Systems (MDS)

Brief History:

• Monotone iteration scheme.
—- Bieberbach ([1912])
—- Courant and Hilbert (Methoden der Mathematischen
Physik [1930]);

• Comparison principle of ODEs and PDEs.
—- M. Müller ([1926]), E. Kamke ([1932]);
—- E. Hopf ([1927])

• Monotonicity fully integrated with Dynam. Sys. ideas.

—- M. W. Hirsch
(A remarkable series of works [82-91], survey [BAMS84,Crelle88])

Establishment of the theory of MDS by Hirsch.
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Ordered Banach Space (V, V+)

Phase space (V, V+).

• A closed convex solid cone V+ ⊂ V (IntV+ 6= ∅).
• A (strong) ordering on V as (∀x1, x2 ∈ V ):

x2 ≤ x1 ⇐⇒ x1 − x2 ∈ V+;
x2 < x1 ⇐⇒ x1 − x2 ∈ V+ \ {0};
x2 � x1 ⇐⇒ x1 − x2 ∈ intV+.

3 / 28



Ordered Banach Space (V, V+)

Phase space (V, V+).

• A closed convex solid cone V+ ⊂ V (IntV+ 6= ∅).
• A (strong) ordering on V as (∀x1, x2 ∈ V ):

x2 ≤ x1 ⇐⇒ x1 − x2 ∈ V+;
x2 < x1 ⇐⇒ x1 − x2 ∈ V+ \ {0};
x2 � x1 ⇐⇒ x1 − x2 ∈ intV+.

3 / 28



Ordered Banach Space (V, V+)

Phase space (V, V+).

• A closed convex solid cone V+ ⊂ V (IntV+ 6= ∅).
• A (strong) ordering on V as (∀x1, x2 ∈ V ):

x2 ≤ x1 ⇐⇒ x1 − x2 ∈ V+;
x2 < x1 ⇐⇒ x1 − x2 ∈ V+ \ {0};
x2 � x1 ⇐⇒ x1 − x2 ∈ intV+.

Simple examples:
• (Rn,Rn+), x ≤ y ⇔ xi ≤ yi, ∀i;
• (C(Ω̄), C+(Ω̄)), u ≤ v ⇔ u(x) ≤ v(x),∀x ∈ Ω̄.

• (W k,p(Ω),W k,p
+ (Ω)), u ≤ v ⇔ u(x) ≤ v(x), a.e. x ∈ Ω.
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Monotone Dynamical Systems (MDS)

Monotone dynamical system Πt:

u(t, x1) ≤ u(t, x2) whenever t ≥ 0 and x1 ≤ x2.
Strongly Monotone dynamical system Πt:

• Πt is monotone;
• u(t, x1)� u(t, x2) whenever t > 0 and x1 < x2.
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Monotone Dynamical Systems (MDS)

MDS. —- A unified framework for dynamics of many differ-
ential equations:

For instance,

• Systems of cooperative ODEs;

ẋ = f(t, x), with
∂fi
∂xj

(t, x) ≥ 0.

• Systems of cooperative Delayed equations;

• Systems of second-order parabolic equations;
—– (by Maximum Principle or Hanark inequality).

• Systems associated with positive or negative feedback.

6 / 28



Monotone Dynamical Systems (MDS)

MDS. —- A unified framework for dynamics of many differ-
ential equations:

For instance,

• Systems of cooperative ODEs;
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Conclusions of strongly MDS

Autonomous Cases: (Tendency not to be chaotic)

• Limit-sets dichotomy (Hirsch[BAMS84,Crelle88])
—- (x ≤ y =⇒ either ω(x)� ω(y) or ω(x) = ω(y) ⊂ E)

• Generic convergence to the set of equilibria.
—- (Hirsch[BAMS84,Crelle88], Matano[84]);

• For smooth systems: Generic convergence to equilibria
—- (Poláčik [89], Smith&Thieme [92]).

• Complicated dynamics restricted to Cod-1 invariant mfds
(at most countably many such mfds, with sort of instability).
—– (Hirsch[86], Dancer and Poláčik [MAMS98]);
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Conclusions of strongly MDS

Periodic Cases (Poincaré map): (Tendency not to be chaotic)

• For smooth systems: Generic convergence to cycles
—- (Poláčik&Tereščák [ARMA92], Hess and Poláčik [94]).

• Complicated dynamics restricted to Cod-1 invariant mfds
(at most countably many, with sort of instability).
—– (Takáč[93,97], Poláčik [02]);

• No Limit-sets dichotomy at all!

• Exponential Separation (1-Dominated Splitting) for invari-
ant sets —- (Mierczyński[91], Poláčik&Tereščák[94])

Autonomous/Periodic Cases:
Global dynamics with various structures:
—– Brunovsky, Dancer, Hess, Matano, Smith, Mallet-Paret,
Jiang, Mierczynski, Sell, Smillie, Fiedler, Sontag, Wu,...
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Conclusions of strongly MDS

Skew-product semiflows: (Multiple External Frequency)

• No generic convergence;

• The dynamics on ω-limit sets can be very complicated;

• Almost automorphic phenomenon.
—- (Shen and Yi [MAMS98,03],

Dynamics under amenable structures:
—– Orbital Stability (Alikakos, Bates, Jiang, Zhao ...)
—– Sublinearity (Obaya et al. [05,10,12,14]);
—– Comparable-partner (Cao, Gyllenberg, W. [PLMS11]).

Group Actions on Skew-product semiflows:

—– Symmetry& Monotonicity w.r.t. connected Group
(W.[09], Cao, Gyllenberg, W. [JEMS16]);

—– Phase-translation Group (Liu and W.[TAMS12]).
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Competitive Dynamical Systems (CDS)

Competition. —- An increase of any one species does not
tend to increase the per capita growth rate of any other
species.

CDS —- A dynamical system that describes the phenomena
of competition.
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Competitive Dynamical Systems (CDS)

Examples:

• Systems of Kolmogorov ODEs: (Say, LV-systems)

ẋi = xifi(x), 1 ≤ i ≤ n;

x = (x1,x2, . . . , xn) ∈ C := {xi ≥ 0, 1 ≤ i ≤ n}.

• Discrete-time Mappings. T : C → C continuous s.t.

Ti(x) = xiGi(x), x ∈ C, i = 1, · · · , n.

• Diffusion with spatial structure.

∂tui = 4ui + uifi(t, x, u), u ≥ 0, 1 ≤ i ≤ n,
with boundary conditions.

“Competition” is modeled by the assumption

∂fi
∂xj
≤ 0 or

∂Gi
∂xj

≤ 0.
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Conclusions of CDS

Competitive systems are “dissipative systems”.
—- ∃ a “global” compact attractor, say Σ, attracting all
nontrivial orbits.

Chaotic behavior observed (Smale [76], Xiao [10]).

CoD-1 topological structure of Σ – Carrying Simplex:

Fig: “front” and “side” views of Σ for a 3-D competitive LV system
with an attracting periodic orbit
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Conclusions of CDS

Competitive systems are “dissipative systems”.
—- ∃ a “global” compact attractor, say Σ, attracting all
nontrivial orbits.

Chaotic behavior observed (Smale [76], Xiao [10]).

CoD-1 topological structure of Σ – Carrying Simplex:

Fig: “concave” carrying simplex of a 3-D competitive system
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Simple Examples

Logistic differential equations:

dx/dt = rx(σ − x), r, σ > 0.

• Γ = [0, σ] and Σ = {σ}.
• Σ is located at the carrying capacity σ.

Discrete Ricker-type competition:

T : [0,+∞)→ [0,+∞);Tx 7→ xeb−ax, a, b > 0.

• If b ≤ 2, Γ = [0, ba ] and Σ = { ba};
• If b > 2, no carrying simplex;
• If b� 2, Chaotic behavior occurs.

15 / 28



Conclusions of CDS

Carrying Simplex: “Carrying capacity in high-dim sys.”

Autonomous cases:

• Existence of Carrying Simplex Σ (Hirsch[88]);

• Smoothness of Σ (Open Problem imposed by Hirsch[88]);

—- Bronovsky[Crelle94] (if sys. is Morse-Smale);

—- Jiang, Mierczyński, W.[JDE09]

� Solved Hirsch’s Problem.
� Characterize smoothness in terms of Lyapunov Expo.

• 3D-competitive sys: Poincaré-Bendixson Type Thm.

• 3D-LV sys.: Limit & heteroclinic cycles on Σ.

—— M. Zeemann, D. Xiao, May-Leonard, Sigmund, Hof-
bauer&So, Gyllenberg, M. Han, P. Yu, Lu&Luo, Yan, W.
...
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� Solved Hirsch’s Problem.
� Characterize smoothness in terms of Lyapunov Expo.

• 3D-competitive sys: Poincaré-Bendixson Type Thm.
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Conclusions of CDS

Discrete-time CDS:

N Existence of Σ:

• Diffeomorphism: (conjectured by Smith[86])

—– Time-periodic equations (Jiang & W. [JDE02]);

—– Diffeomorphism;
(Jiang & W. [JDE02], Diekmann, W., Yan[08]);

• Mappings: (Announcement by Hirsch[08])

—– (Jiang, Niu & W.[JMB16])

N Uniqueness of the asymptotic phase on Σ:

—– (Gyllenberg & W.[JDE04])

N Smoothness & Normal hyperbolicity of Σ:

—– (Jiang, Mierczyński, W.[JDE09])

Non-autonomous & Random CDS:

—– (Shen & W.[JDE08], Fang, Gyllenberg & W. [SIMA13])
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Non-autonomous & Random CDS:

—– (Shen & W.[JDE08], Fang, Gyllenberg & W. [SIMA13])
17 / 28



Difference/Relation between MDS & CDS

Difference/Relation between MDS & CDS:

N Expected dynamics:

• MDS: Generic convergence to equilibria/cycles

• CDS: Chaotic behavior observed

N Order-preserving phenomenon:

• MDS: Order-preserving in forward time

• CDS: Order-preserving in backward time

N 2-D Global dynamics :

• MDS/CDS: Both simple Global dynamics.

N 3-D Global dynamics :

• MDS/CDS: Both Poincaré-Bendixson Type Thm.

• MDS: @ stable Periodic orbit.

• CDS: ∃ stable Periodic orbit.
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New perspective: MDS Vs. CDS

N New perspective: Cones of rank-k (k-cone):

Definition (Cone of rank-k)

Let k ≥ 1 be an integer. A closed subset C ⊂ X which satisfies:

(i) ∀x ∈ C, λ ∈ X, one has λx ∈ C;

(ii) ∃ a k-dim subspace E ⊂ X s.t. E ⊂ C;

(ii) ∃ a k-codim subspace L ⊂ X s.t. L ∩ C = {0}.

• MDS: Order-preserving w.r.t. 1-cone in forward time;

• CDS: Order-preserving w.r.t. (n− 1)-cone in forward time.

———————————————————

Dynamics of Monotone semiflows w.r.t. k-cone.
—— (Feng & W. & Wu [16])

Krein-Rutmann & Perron-Frobenius Thm w.r.t. k-cone.
—— (Z. Lian and W. [JDE15],[16])
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Dynamics of Monotone semiflows w.r.t. k-cone.
—— (Feng & W. & Wu [16])

Krein-Rutmann & Perron-Frobenius Thm w.r.t. k-cone.
—— (Z. Lian and W. [JDE15],[16])
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Differences between 1-cone & and k-cone (k ≥ 2)

1-cone Vs. 2-cone :

1-cone: C = K ∪ (−K); (with K ∩ (−K) = {0}).
2-cone: If write C = K̃ ∪ (−K̃), (K̃ ∩ (−K̃) 6= {0}).

convexity
—— K convex. But, NO convexity for 2-cone!
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Singular perturbed MDS & CDS

Fast-slow ODEs system:

dx

dt
= f0(x, y, ε), ε

dy

dt
= g0(x, y, ε). (∗ε)

• f0 (g0) : (x, y, ε) ∈ U × V × [0, ε0]→ Rn (Rm),

(U ⊂ Rn, V ⊂ Rm open bdd, f0, g0 ∈ Crb with r > 1).

• ∃ Crb -function h : U → V s.t. g0(x, h(x), 0) = 0,∀x ∈ U .

• Re[Dyg0(x, h(x), 0)] < 0, ∀x ∈ U.
• ∃ convex compact sets Dε ⊂ U × V , conti. depend on ε,

s.t. Eq.(*) positively invariant on Dε.

• The limiting system

dx

dt
= f0(x, h(x), 0) (∗0)

is of MDS or CDS on Projx (D0 ∩ graph(h)).
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Singular perturbed MDS & CDS

N Singular perturbed Monotone Dyn. Sys.

—– Generic convergence to equilibria. (Wang&Sontag[08])

N Singular perturbed Competitive Dyn. Sys.?

Theorem (Niu & W. [16])

Assume that
dx

dt
= f0(x, h(x), 0) (∗0)

is of CDS on Projx (D0 ∩ graph(h)) ⊂ Rn. Then ∃ ε∗ ∈ (0, ε0)
s.t. for each ε ∈ (0, ε∗), we have

(i) If n = 2, then any orbit of (∗ε) starting from Dε converges
to some equilibrium;

(ii) If n = 3, then any limit-set of (∗ε) that contains no equilib-
rium points is a periodic orbit;

(iii) For general n, any limit-set of (∗ε) can be embedded into an
(n− 1)-dim invariant hypersurface.
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Singular perturbed CDS

N Singular perturbed CDS
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Some examples

N Dual phosphorylation Futile Cycle:

• S0, S2 : substrates; S1 : Intermediate substrates.
• E: An Enzyme (phosphorylase-��zs): kinase-phosphorylates
the substrates.
• F : An Enzyme (phosphatase-���s): dephosphorylation.
• Ci: intermediate complex-¥mzÜÔ.
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Some examples

N Dual phosphorylation Futile Cycle:



ds0
dτ

= h4c4 − k1s0e+ k−1c1,

ds2
dτ

= k4c2 − h1s2f + h−1c3,

dc1
dτ

= k1s0e− (k−1 + k2)c1,

dc2
dτ

= k3s1e− (k−3 + k4)c2,

dc4
dτ

= h3s1f − (h−3 + h4)c4,

dc3
dτ

= h1s2f − (h−1 + h2)c3,

(DPFC)
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Dual phosphorylation Futile Cycle

N Conservation Law:

S =

2∑
i=0

si +

4∑
j=1

cj , E = e+ c1 + c2, F = f + c4 + c3.

N Rescaling:

x1 =
s0

S
, x2 =

s2

S
, y1 =

c1

E
, y2 =

c2

E
, y3 =

c4

F
, y4 =

c3

F
, ε =

E

S
, c =

F

E
, t = τε.

N New Equation:


dx1

dt
= −k1Sx1(1− y1 − y2) + k−1y1 + h4cy3,

dx2

dt
= −h1Scx2(1− y3 − y4) + h−1cy4 + k4y2,

ε
dy1

dt
= k1Sx1(1− y1 − y2)− (k−1 + k2)y1,

ε
dy2

dt
= k3S(1− x1 − x2 − εy1 − εy2 − εcy3 − εcy4)(1− y1 − y2)− (k−3 + k4)y2,

ε
dy3

dt
= h3S(1− x1 − x2 − εy1 − εy2 − εcy3 − εcy4)(1− y3 − y4)− (h−3 + h4)y3,

ε
dy4

dt
= h1Sx2(1− y3 − y4)− (h−1 + h2)y4.

(DPFC-1)
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Dual phosphorylation Futile Cycle

Dε = {(x1, x2, y1, y2, y3, y4) ∈ R6
+ : 0 ≤ y1 + y2 ≤ 1, 0 ≤ y3 + y4 ≤ 1,

0 ≤ x1 + x2 + ε(y1 + y2 + cy3 + cy4) ≤ 1}.

N (∗0) turns out to be:


dx1

dt
= −

k2x1
K1
S

+
K1(1−x1−x2)

K2
+ x1

+
h4c

K3(1−x1−x2)
K4

K3
S

+
K3(1−x1−x2)

K4
+ x2

, F1(x1, x2),

dx2

dt
= −

h2cx2
K3
S

+
K3(1−x1−x2)

K4
+ x2

+
k4
K1(1−x1−x2)

K2
K1
S

+
K1(1−x1−x2)

K2
+ x1

, F2(x1, x2),

where K1 =
k−1+k2
k1

, K2 =
k−3+k4
k3

, K3 =
h−1+h2
h1

, K4 =
h−3+h4
h3

.

N ∂F1
∂x2

< 0, ∂F2
∂x1

< 0 on {(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.

——- (∗0) is a 2-D CDS.

Corollary (Niu & W. [16])

∃ ε∗ ∈ (0, ε0) s.t. for each ε ∈ (0, ε∗), any orbit of (DPFC-1)
starting from Dε converges to some equilibrium.
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Thank You for your attention!
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