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Monotone Dynamical Systems (MDS)

o Brief History:

e Monotone iteration scheme.

—- Bieberbach ([1912])

—— Courant and Hilbert (Methoden der Mathematischen
Physik [1930]);

e Comparison principle of ODEs and PDFEs.
— M. Miiller ([1926]), E. Kamke ([1932]);
— E. Hopf ([1927])

e Monotonicity fully integrated with Dynam. Sys. ideas.

— M. W. Hirsch
(A remarkable series of works [82-91], survey [BAMS84,Crelle88])

o Establishment of the theory of MDS by Hirsch.




Ordered Banach Space (V, V)

o Phase space (V, V).

e A closed convex solid cone Vi, C V (IntVy # 0).
e A (strong) ordering on V as (V1,22 € V):

To <1 = 11 — a2 € V;
g < x1 = x1 —x2 € VL \ {0}
To L T1 << T1 — T2 EintV+.
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Ordered Banach Space (V, V)

o Phase space (V, V).

e A closed convex solid cone Vi C V (IntV, # 0).
e A (strong) ordering on V as (Vxi,x9 € V):

To < x) <= 11 — a2 € V;
o < w1 <= x1 — 22 € V3 \ {0};
To L 1 <= x1 — T2 € intV}.

e Simple examples:
C (anRZL—)a ﬂUSy@%S?JuW

¢ (C(Q),CL(Q), u<veulr)<v(r),Vze.

Ji
o (WFP(Q), WFP(Q)), u<v & u(z) <u(z)aex e



Monotone Dynamical Systems (MDS)

o Monotone dynamical system II;:

u(t,z1) < u(t,z2) whenever ¢t > 0 and 1 < x9.

e Strongly Monotone dynamical system II;:

e II; is monotone;
o u(t,r1) < u(t,x2) whenever t > 0 and x1 < x3.
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Monotone Dynamical Systems (MDS)

o MDS. — A unified framework for dynamics of many differ-
ential equations:
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Monotone Dynamical Systems (MDS)

o MDS. — A unified framework for dynamics of many differ-
ential equations:

For instance,

e Systems of cooperative ODEs;

- o,
T = f(t,x), with oz,

(t,z) > 0.

e Systems of cooperative Delayed equations;

e Systems of second-order parabolic equations;
—— (by Maximum Principle or Hanark inequality).

e Systems associated with positive or negative feedback.
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Conclusions of strongly MDS

o Autonomous Cases: (Tendency not to be chaotic)

e Limit-sets dichotomy (Hirsch[BAMS84,Crelle88])
— (x < y = either w(z) € w(y) or w(z) =w(y) C E)

e Generic convergence to the set of equilibria.
— (Hirsch|[ BAMS84,Crelle88], Matano[84]);
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Conclusions of strongly MDS

o Periodic Cases (Poincaré map): (Tendency not to be chaotic)

e For smooth systems: Generic convergence to cycles
— (Polacik& Terescak [ARMA92], Hess and Polacik [94]).

e Complicated dynamics restricted to Cod-1 invariant mfds
(at most countably many, with sort of instability).
— (Tak4ac[93,97], Polacik [02]);

e No Limit-sets dichotomy at all!

e Exponential Separation (1-Dominated Splitting) for invari-
ant sets — (Mierczyniski[91], Polacik& Terescak[94])

e Autonomous/Periodic Cases:
Global dynamics with various structures:
—— Brunovsky, Dancer, Hess, Matano, Smith, Mallet-Paret,
Jiang, Mierczynski, Sell, Smillie, Fiedler, Sontag, Wu,...
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o Skew-product semiflows: (Multiple External Frequency)

e No generic convergence;
e The dynamics on w-limit sets can be very complicated;

e Almost automorphic phenomenon.
— (Shen and Yi [MAMS98,03],

o Dynamics under amenable structures:
—— Orbital Stability (Alikakos, Bates, Jiang, Zhao ...)
—— Sublinearity (Obaya et al. [05,10,12,14]);
—— Comparable-partner (Cao, Gyllenberg, W. [PLMS11]).

@ Group Actions on Skew-product semiflows:

—— Symmetry& Monotonicity w.r.t. connected Group
(W.[09], Cao, Gyllenberg, W. [JEMS16]));

—— Phase-translation Group (Liu and W.[TAMS12]).



Competitive Dynamical Systems (CDS)

o Competition. — An increase of any one species does not
tend to increase the per capita growth rate of any other
species.

o CDS — A dynamical system that describes the phenomena
of competition.
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e Systems of Kolmogorov ODEs: (Say, LV-systems)

iy = g iialan))g 1<i<m
x = (z1,x2,...,2p) €EC:={x; >0, 1 <i<n}.

e Discrete-time Mappings. T': C' — C continuous s.t.
Ti(z) = 2;Gi(z), ze€Cyi=1,--- n.

e Diffusion with spatial structure.

8tul:Aul+qul(t)x7u)7 UZOJ SZSH,

with boundary conditions.

o “Competition” is modeled by the assumption

6fi§0 or 0G;
a$j (9:6]'

<0.
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nontrivial orbits.
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Conclusions of CDS

o Competitive systems are “dissipative systems”.
— d a “global” compact attractor, say 3, attracting all
nontrivial orbits.

o Chaotic behavior observed (Smale [76], Xiao [10]).

@ CoD-1 topological structure of ¥ — Carrying Simplex:

Fig: “convex” carrying simplex of a 3-D competitive system

13 /28



Conclusions of CDS

o Competitive systems are “dissipative systems”.
— d a “global” compact attractor, say 3, attracting all
nontrivial orbits.

o Chaotic behavior observed (Smale [76], Xiao [10]).

@ CoD-1 topological structure of ¥ — Carrying Simplex:

Fig: “concave” carrying simplex of a 3-D competitive system
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Simple Examples

o Logistic differential equations:
dx/dt =rx(c —x), r,0>0.

e['=[0,0] and ¥ = {o}.
e Y is located at the carrying capacity o.

o Discrete Ricker-type competition:
T:[0,+00) — [0,400); Tz 2" a,b> 0.
oIfng,I’:[O,g] andE:{g};

e If b > 2, no carrying simplex;
e If b > 2, Chaotic behavior occurs.

15 /28



Conclusions of CDS
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o Autonomous cases:

e Existence of Carrying Simplex ¥ (Hirsch[88]);

e Smoothness of ¥ (Open Problem imposed by Hirsch[88]);
—- Bronovsky|[Crelle94] (if sys. is Morse-Smale);
— Jiang, Mierczynski, W.[JDEQ9]
4 Solved Hirsch’s Problem.
4 Characterize smoothness in terms of Lyapunov Expo.

e 3D-competitive sys: Poincaré-Bendixson Type Thm.

e 3D-LV sys.: Limit & heteroclinic cycles on 3.

—— M. Zeemann, D. Xiao, May-Leonard, Sigmund, Hof-
bauer&So, Gyllenberg, M. Han, P. Yu, Lu&Luo, Yan, W.
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Conclusions of CDS

o Discrete-time CDS:

A Existence of >:
e Diffeomorphism: (conjectured by Smith[86])
—— Time-periodic equations (Jiang & W. [JDE02]);
—— Diffeomorphism;
(Jiang & W. [JDE02], Diekmann, W., Yan[08]);
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Conclusions of CDS

o Discrete-time CDS:

A Existence of X:
e Diffeomorphism: (conjectured by Smith[86])
—— Time-periodic equations (Jiang & W. [JDE02]);
—— Diffeomorphism;
(Jiang & W. [JDE02], Diekmann, W., Yan[08]);
e Mappings: (Announcement by Hirsch[08])
— (Jiang, Niu & W.[JMB16])

A Uniqueness of the asymptotic phase on X:
—— (Gyllenberg & W.[JDE04])

A Smoothness & Normal hyperbolicity of X:
—— (Jiang, Mierczynski, W.[JDEQ9])

o Non-autonomous & Random CDS:
—— (Shen & W.[JDEO0S], Fang, Gyllenberg & W. [SIMA13])
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Difference/Relation between MDS & CDS

o Difference/Relation between MDS & CDS:

A Expected dynamics:
e MDS: Generic convergence to equilibria/cycles
e CDS: Chaotic behavior observed
A Order-preserving phenomenon:
e MDS: Order-preserving in forward time
e CDS: Order-preserving in backward time
A 2-D Global dynamics :
e MDS/CDS: Both simple Global dynamics.
A 3-D Global dynamics :
e MDS/CDS: Both Poincaré-Bendixson Type Thm.
e MDS: 7 stable Periodic orbit.
e CDS: d stable Periodic orbit.



New perspective: MDS Vs. CDS
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A New perspective: Cones of rank-k (k-cone):

Definition (Cone of rank-k)

Let £ > 1 be an integer. A closed subset C C X which satisfies:
(i) Vx € C;\ € X, one has \x € C;

(ii) 3 a k-dim subspace E C X s.t. E C C;

(ii) 3 a k-codim subspace L C X s.t. LN C = {0}.

e MDS: Order-preserving w.r.t. 1-cone in forward time;

e CDS: Order-preserving w.r.t. (n — 1)-cone in forward time.

@ Dynamics of Monotone semiflows w.r.t. k-cone.
—— (Feng & W. & Wu [16])

e Krein-Rutmann & Perron-Frobenius Thm w.r.t. k-cone.
—— (Z. Lian and W. [JDE15],[16])
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Differences between 1-cone & and k-cone (k > 2)

1-cone Vs. 2-cone :
o l-cone: C = KU (-K); (with KN (-K)={0}).
@ 2-cone: If write C = K U (—K), (KN (=K)#{0}).

@ convexity
—— K convex. But, NO convexity for 2-cone!
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Singular perturbed MDS & CDS

o Fast-slow ODEs system:

dx

dy
a = fO(maya 6)7 6% = gO(mvyae)' (*6)
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Singular perturbed MDS & CDS

o Fast-slow ODEs system:

dx

_ dy _
% - fO(maya€)7 6% - gO(xvyae)' (*6)

e fo(g0): (z,y,¢) €U XV x [0,¢] — R™ (R™),

(U CcR™,V C R™ open bdd, fo, g0 € C; with 7 > 1).
e 3 Cy-function h: U — V s.t. go(x, h(x),0) =0,V € U.
e Re[Dygo(z, h(x),0)] <0, Yz € U.
e 3 convex compact sets D. C U x V, conti. depend on e,

s.t. Eq.(*) positively invariant on Dk.
e The limiting system

dx

i fo(z, h(z),0) (*0)

is of MDS or CDS on Projx (Do N graph(h)).



Singular perturbed MDS & CDS

A Singular perturbed Monotone Dyn. Sys.
—— Generic convergence to equilibria. (Wang&Sontag[08])
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Singular perturbed MDS & CDS

A Singular perturbed Monotone Dyn. Sys.
—— Generic convergence to equilibria. (Wang&Sontag[08])

A Singular perturbed Competitive Dyn. Sys.?

Theorem (Niu & W. [16])

Assume that

— = fo(x, h(x),0) (*0)

is of CDS on Projx (Do Ngraph(h)) C R™. Then 3 €* € (0, €)

s.t. for each € € (0,€*), we have

(i) If n = 2, then any orbit of (x¢) starting from D, converges
to some equilibrium;

(ii) If n = 3, then any limit-set of (x¢) that contains no equilib-
rium points is a periodic orbit;

(iii) For general n, any limit-set of (x¢) can be embedded into an
(n — 1)-dim invariant hypersurface.
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Singular perturbed CDS

A Singular perturbed CDS
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Some examples

A Dual phosphorylation Futile Cycle:

k 2 ks x
So+E=C B s +E= 0B 54 E,
k—y k_3

hy Iy h3 s
HH+FZC= 85+ F=Ci— S+ F.

h_y h_s

e Sy, 59 : substrates; S : Intermediate substrates.

e E: An Enzyme (phosphorylase-### /LB ): kinase-phosphorylates
the substrates.

e F: An Enzyme (phosphatase-### #): dephosphorylation.

e C;: intermediate complex- ¥ AL &4,



Some examples

A Dual phosphorylation Futile Cycle:

kok ks ok
So+E=Ci = S+ E=Cr, = SH+E,
k—y k—3

hy s I3 hy
SH+F=2C3—> S+ F=2Ci— So+ F.

h_y h_s

d

20 - hacy — k1spe +k_1c1,
dr

d

22 _ ksco — hysof +h_qcs,
dr

d

% = kisoe — (k—1 + k2)c1,
dCT (DPFC)
T: = k3s1e — (k,S = k4)02,
de

CT: = hss1f — (h—3 + hy)ca,
dc

ch = hisaf — (h_1 + ha)cs,



Dual phosphorylation Futile Cycle

A Conservation Law:
2 4
SzZsi—l—ch, E=e+ci+cy, F=f+cy+cs.
i=0 j=1

A Rescaling:

) D) cy co cq c3 E

A New Equation:

% = —k1Sz1(1 —y1 —y2) + k_1y1 + hacys,

dstQ = —h1Scxa(l —y3 — ya) + h_1cys + kaya,

djtl =k1Sz1(1 —y1 —y2) — (k—_1 + k2)y1,

edditz =k3S(1 — =z — w3 — ey — ey — ecy3z — ecyq)(1 —y1 — y2) — (k—3 + ka)y2,
eddif =h3S(l —z1 — 2 —ey1 — ey2 — ecy3 — ecya)(l —y3 —ya) — (h_3 + ha)ys,
eddi: = h1Sz2(1 — ys — va) — (h—1 + h2)va.

(DPFC-1)
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Dual phosphorylation Futile Cycle

6
De ={(z1,72,y1,y2,¥3,94) ERL :0<y1 +y2 <1,0<ys +ys <1,
0 <z + 22+ e(yr +y2 +cys +cya) < 1}

A (x0) turns out to be:

Kz(l—zq—z9)
dzq koxq hyc—S8-——1—22 Kl 2
=K Ki(l—z1—z9) + K K3(1 14 z9) éFl(zl’IZ)’
e — e —
dt T1+1K7212+$1 4534_ 3 K41 2) 4 g,

Ki(1—@q—z95)
dxo hacxo kg=—L—-1—2°

S K3(l—=q—ag) K K (1 I:Q = £ Fo(x1, 22),
dt 23 3L —T) —%2 1 B e P 2
5 T+ o + x2 5 T K + a1
k_q+ko k_g+ky h_1+hg h_g+hy
where KlzT,KZ: s , K3 = 2 , Ky = ) o
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A (x0) turns out to be:

Kz(l—zq—z9)
dzq koxq hyc—S8-——1—22 Kl 2
=K Ki(l—z1—z9) + K K3(1 14 z9) éFl(zl’IZ)’
e — e —
dt T1+1K7212+$1 4534_ 3 K41 2) 4 g,

Ky Kij(l—=j—x3)

dxo hacxo Ky A g (21, 72)
- = t'2\T1,*2),
K K3(l—xz)—x K Ki(l—z1—=
dt LE R 3( K741 P L4 1( K21 27
k_1+ko k_g+ky h_1+hg h_3+hy
where KlzT,KZ: s , K3 = i Ky = s .

A % <0, % < 0 on {(e1,22) | @1 > 0,@2 > 0,21 + a2 < 1}.
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6
De ={(z1,72,y1,y2,¥3,94) ERL :0<y1 +y2 <1,0<ys +ys <1,
0 <z + 22+ e(yr +y2 +cys +cya) < 1}

A (x0) turns out to be:

Kz(l—zy —=g)
e Sy aF fac K4 2 Py (z1,x2)
=== = Fi(z1,z2),
dt Ky | Kj(l—=)—wg) K3 | Kg(l—zj—mg)
5+ 58 e 5t Ra + z2
Ki(l—=z1—z9)
dxo hacxo o kg Ky &g ( )
—_— == = Fa(z1,22),
K Ky(l—z1—= K K1 (1 =
dt 34 3( KT41 z2) - LS 1( Kﬂ"l z3) 4k
_ k_1+ko _ k_g+kg h_1+ho _ h_g3thg
where K = = , Ko = s , K3 = i , Ky = s o

A 8F1 <0, % < 0 on {(e1,22) | @1 > 0,@2 > 0,21 + a2 < 1}.
(%0) is a 2-D _CDS.

Corollary (Niu & W. [16])

3 e € (0,e0) s.t. for each € € (0,€*), any orbit of (DPFC-1)
starting from D, converges to some equilibrium.




Thank You for your attention!



