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Background: Lins-de Melo-Pugh’s conjecture

Consider a classical polynomial Liénard differential equation

ẋ = y − F (x),

ẏ = −x,

where F (x) is a polynomial in x of degree n.

In 1977 A. Lins, W. de Melo and C. C. Pugh conjectured that the equation has

at most
[
n−1

2

]
limit cycles,

where
[
n−1
2

]
means the largest integer less than or equal to n−1

2 .
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Lins-de Melo-Pugh’s conjecture

Consider a classical polynomial Liénard differential equation

ẋ = y − F (x),

ẏ = −x,

where F (x) is a polynomial in x of degree n.

In 1977 A. Lins, W. de Melo and C. C. Pugh conjectured that the equation has

at most
[
n−1

2

]
limit cycles,

where
[
n−1
2

]
means the largest integer less than or equal to n−1

2 .

—————————————————————————————–

n 3 4 5 6 7 8 · · ·

[n−12 ] 1 1 2 2 3 3 · · ·
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About This Conjecture

The Lins-de Melo-Pugh’s conjecture

• is true for n=3.

- In the same paper by A. Lins, W. de Melo and C. C. Pugh:

Lecture Notes in Math, 597£1977¤.

£can be proved by Zhang Zhifen’s Theorem in a very simple way.¤

• was open for n ≥ 4 for 30 years.

• was studied by S. Smale as a “failed attempt”.

Physica D, 51£1991¤;êÆÈ�§12£1993¤.
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About This Conjecture

The Lins-de Melo-Pugh’s conjecture is

• not true for n = 7 (or n > 7 odd).

- F. Dumortier, D. Panazzolo and R. Roussarie , Proc. AMS, 135£2007¤.
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The Lins-de Melo-Pugh’s conjecture is

• not true for n = 7 (or n > 7 odd).

- F. Dumortier, D. Panazzolo and R. Roussarie , Proc. AMS, 135£2007¤.

• not true for n ≥ 6: at least 2 more limit cycles can appear.

- P. De Maesschalck and F. Dumortier, JDE, 250£2011¤.
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About This Conjecture

The Lins-de Melo-Pugh’s conjecture is

• not true for n = 7 (or n > 7 odd).

- F. Dumortier, D. Panazzolo and R. Roussarie , Proc. AMS, 135£2007¤.

• not true for n ≥ 6: at least 2 more limit cycles can appear.

- P. De Maesschalck and F. Dumortier, JDE, 250£2011¤.

————————————————————–

Remarks:

1. For n ≥ 6: can have n− 2 limit cycles.

- P. De Maesschalck and R. Huzak, JDDE, 27£2015¤.

2. The above 3 results were obtained by using singular perturbations.
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About This Conjecture

The Lins-de Melo-Pugh’s conjecture is

• true for n=4.

- C. Li and J. Llibre, JDE, 252£2012¤.
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About This Conjecture

The Lins-de Melo-Pugh’s conjecture is

• true for n=4.

- C. Li and J. Llibre, JDE, 252£2012¤.

• still open for n = 5.

—————————————————-

This is the reason for us to study the classical Liénard equations of degree 5,

but under singular perturbations.
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Results

Consider classical Liénard equations of degree 5 under singular perturbations

dx

dt
= F (x)− y, dy

dt
= ε(x− λ(ε)),

where F is a polynomial of degree 5.

We denote any non-degenerate slow-fast cycle of this system by Γs with level s,
and the slow divergence integral along Γs by I(s).

Theorem 1 For any such Γs, I(s) has at most one zero, and if I(s̄) = 0 then
I ′(s̄) 6= 0.

Theorem 2 The cyclicity of Γs ≤ 2.

This means that at most 2 limit cycles of the system can be perturbed from Γs

for small ε (including the multiplicity).
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Definitions

The slow curve for this system is SF := {(x, y) | y = F (x)}.

A slow-fast cycle is formed by one or several compact parts of slow curve and

one or several compact parts of fast orbits, which is homeomorphic to a circle

and piecewise smooth, with uniform orientation (clockwise or counter-clockwise)

coming from the fast and slow subsystems.

A slow-fast cycle Γ is non-degenerate if

(1) for any point (x, y) ∈ Γ ∩ SF if F ′(x) = 0 then F ′′(x) 6= 0.

(2) Γ is not case II transitory, see Figs 2.
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00 0x1 x1x1 x1

s̄

ŝ

(a) cycle without head (b) case I transitory (c) cycle with head

Figure 1. Type I transitory slow-fast cycle and nearby slow-fast cycles.

x x x

y y y

0 0 0a b 1

s̄ ŝ

(a) cycle without head (b) case II transitory (c) cycle with head

Figure 2. Type II transitory slow-fast cycle and nearby slow-fast cycles.

1
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About Transitory Cases

Both cases I and II can appear in classical Liénard equations of degree 5.

P. De Maesschalck, F. Dumortier and R. Roussarie proved the following result:

Theorem A When the slow divergence integral is not zero for the transitory

slow-fast cycle Γ of case I or II, there is at most one periodic orbit Hausdorff close

to Γ for ε > 0 small enough. When the slow divergence integral is equal to zero,

there are at most two periodic orbits Hausdorff close to Γ in case I and at most

three in case II.

See: C. R. Math. Acad. Sci. Paris 352(4)(2014).
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The Basic Tool: Slow Divergence Integral

xx

y y

00

(a) (b)

s
s

ωs αsαs

Γ(s)

Γ̃(s)

ωM xM

sM

ω′
s

σ(x) σ1(x)

σ2(x)

ωs
x0

Figure 3. The slow-fast cycle Γ(s) or Γ̃(s).

For Γ(s) : I(s) =

∫ αs

ωs

(F ′(x))2

x− λ(0)
dx;

For Γ̃(s) : Ĩ(s) =

∫ αs

ωM

(F ′(x))2

x− λ(0)
dx+

∫ xM

ω′
s

(F ′(x))2

x− λ(0)
dx.

1
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New Form of The Slow Divergence Integral

If the slow curve is U -shaped, for each x ∈ [ωs, 0] we define σ(x) ∈ [0, αs] by

F (x) = F (σ(x)),

see Figure 3(a). Hence for x ∈ [ωs, 0) we have that

σ′(x) =
F ′(x)

F ′(σ(x))
< 0.

Similarly, if the slow curve is S-shaped (see Figure 3(b)), for each x ∈ [ωM , 0]

we define σ1(x) ∈ [0, xM ] and σ2(x) ∈ [xM , x0] by

F (x) = F (σj(x)), j = 1, 2,

and for x 6= ωM , x 6= 0 we have that

σ′1(x) =
F ′(x)

F ′(σ1(x))
< 0, σ′2(x) =

F ′(x)

F ′(σ2(x))
> 0.
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The New Form of Slow Divergence Integral

xx

y y

00

(a) (b)

s
s

ωs αsαs

Γ(s)

Γ̃(s)

ωM xM

F (xM )

ω′
s

σ(x) σ1(x)

σ2(x)

ωs
x0

Figure 3. The slow-fast cycle Γ(s) or Γ̃(s).

Let h(x) = F ′(x)
x−λ(0) ,

and x = F−1(y) be inverse function of y = F (x) for x < 0, then

I(s) =

∫ s

0

[h(σ(x)) − h(x)]|x=F−1(y)dy, ;

Ĩ(s) =

∫ s

0

[h(σ1(x)) − h(x)]|x=F−1(y)dy +

∫ F (xM )

s

[h(σ2(x))− h(x)]|x=F−1(y)dy.

1
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The Benefits of the New formula

• In new formula the integrand function is F ′(x)
x−λ(0) instead of (F ′(x))2

x−λ(0) in the usual

formula;

• In new formula h(σ(x))− h(x) = (σ(x)− x)ξ(x, σ(x)), where σ(x)− x > 0;

• ξ(x, σ(x)) is symmetry with respect to x and σ(x), where F (x) = F (σ(x)).

These relations may simplify the expression of ξ(x, σ(x)).

————————————————

In the rest part we will introduce the main steps to prove Theorem 1, see

C. Li and K. Lu: JDE, 257 (2014), 4437–4469

for details.
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Step 1: putting equation to a simpler form

dx

dt
= F (x)− y, dy

dt
= ε(x− λ(ε)),

where F is a polynomial of degree 5, SF has at least one local minimum point and

at least one local maximum point.

By changes of variables and parameters and using the non-degenerate condition

we can suppose that SF has a simple minimum at (0, 0) and a simple maximum at

(1, 0); the functions F ′(x) and F (x) can be expressed in the forms

F ′(x) = −x(x2 − αx + β)(x− 1),

and

F (x) =
β

2
x2 − α + β

3
x3 +

1 + α

4
x4 − 1

5
x5.

where α2 6= 4β > 0.
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Step 1: putting equation to a simpler form

(1) If α2 < 4β, then the minimum and maximum are unique;

(2) If α2 > 4β > 0, then without loss of generality we can suppose that SF

has two simple minimum points at (0, 0) and (b, 0), and has two simple maximum

points at (a, 0) and (1, 0), where

0 < a < b < 1.

In this case F ′(x) and F (x) has the forms

F ′(x) = −x(x− a)(x− b)(x− 1),

and

F (x) =
ab

2
x2 − a + b + ab

3
x3 +

1 + a + b

4
x4 − 1

5
x5,

where α = a + b and β = ab.
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Examples of slow-fast cycles and corresponding I(h)

xx

yy

00 a b1 1

s

s

(a) α2 < 4β (b) α2 > 4β

Fig 4. Different shapes of slow-fast cycles.

(a) I(s) =

∫ s

0

[h(σ1(x)) − h(x)]|x=F−1(y)dy +

∫ F (1)

s

[h(σ2(x)) − h(x)]|x=F−1(y)dy.

(b) I(s) =

∫ F (b)

0

[h(σ1(x)) − h(x)]|x=F−1(y)dy +

∫ s

F (b)

[h(σ3(x))− h(x)]|x=F−1(y)dy

+

∫ F (1)

s

[h(σ4(x)) − h(x)]|x=F−1(y)dy +

∫ F (a)

F (1)

[h(σ2(x)) − h(x)]|x=F−1(y)dy.

1
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A basic Lemma

Note that

h(σk(x))− h(x) = (σk(x)− x) ξ(σk(x), x).

Lemma For classical Liénard equations of degree 5 we have that if for x < 0

each function ξ(σk(x), x) has at most one zero for k = 1, 2, · · · , ` (` = 2 or 4),

then the slow divergence integral of any slow-fast cycle Γ of the system has at most

1 zero and the zero is simple when exists.

———————————————————————

Remark To prove Theorem 1, we only need to prove that

for x < 0 each function ξ(σk(x), x) has at most one zero for k = 1, 2, · · · , `
(` = 2 or 4).
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Step 2: the position of canard point

We will consider 3 cases:

(1) the canard point is at (0, 0);

(2) the canard point is at (a, F (a));

(3) there is no canard point (all of turning points are jump points).

————————————————————

Remark : If the canard point is at (1, F (1)) or (b, F (b)), then by the change

(x, y, λ) = (1 − x̄, F (1) − ȳ, 1 − λ̄), the system keeps the same form, but F (x) is

replaced by F̄ (x̄) = F (1)−F (1− x̄), and the parameters (a, b) with 0 < a < b < 1

become (ā, b̄) = (1 − b, 1 − a) with 0 < ā < b̄ < 1. Moreover, along the

slow curve the original maximal point (1, F (1)) becomes a minimal point (0, 0),

and the original minimal point (b, F (b)) becomes a maximal point (ā, F̄ (ā)) =

(1− b, F (1)− F (b)).
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Step 3: the canard point is at (0, 0)

I(s) =
∑̀

j=1

∫ sj

sj−1

[(h(σj(x))− h(x)]|x=F−1(y)dy,

=
∑̀

j=1

∫ sj

sj−1

[(σj(x)− x) ξ(σj(x), x)]|x=F−1(y)dy,

where σj(x)− x > 0, and

h(x) =
F ′(x)

x− λ(0)
=
F ′(x)

x
= −(x2 − αx + β)(x− 1).

Hence

ξ(σj(x), x) = −(x2 + σ2j (x))− xσj(x) + (α + 1)(x + σj(x))− (α + β)

= −
(
x + x̄− 1 + α

2

)2

−
(
β − (1− α)2

4

)
+ xx̄,

where x̄ = σj(x), hence xx̄ < 0, and if β− (1−α)2
4 ≥ 0, we have ξ(x̄, x) < 0, hence

I(h) has a fixed sign and the proof is complete.
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So we suppose

β <
(1− α)2

4
,

and prove that ξ(x̄, x) = 0 has at most one zero for x < 0.

Thus we only need to consider

(α, β) ∈ {Ω1 ∪ Ω2},

where

Ω1 = {(α, β) |α2/4 < β < (1− α)2/4,−∞ < α ≤ 1

2
},

Ω2 = {(α, β) | 0 < β < min [α2/4, (1− α)2/4], 0 < α < 1}.

Note that Ω1∪Ω2 is divided in the regions a, b, c, d, e and f by curves C1-C4 and

lines L1 and L2, see Fig 5.
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c

b

a

d

e f

0

0

1

1−1

L2

L1

C3

C4

1
2

1
2

C1

C1

C1
C2

C2

C2

α

β

P ∗

P ∗

1
4

1
4

−4

Fig 5. Partitions of Ω1 and Ω2.

1
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Conclusion

]{ξ(x̄(x), x) = 0 |x < 0} = 0 if (α, β) ∈ a, c, d, f, L1, L2, C3, C4;

]{ξ(x̄(x), x) = 0 |x < 0} = 1 if (α, β) ∈ b, e;

Method to prove

ξ(x̄, x) = 0, η(x̄, x) = 0,

the second comes from F (x) = F (x̄). Eliminating x̄, we obtaion

ψ(x) = 0,

where
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ψ(x) = 144x8 − 324(1 + α)x7 + 27(7 + 30α + 16β + 7α2)x6

−6(9 + 91α + 184β + 91α2 + 64αβ + 9α3)x5 + 3(18 + 39α

+237β + 154α2 + 428αβ + 112β2 + 39α3 − 33α2β + 18α4)x4

−36(α + β)(3 + 2α + 33β + 2α2 − 7αβ + 3α3)x3

+(30α + 120β + α2 + 302αβ + 931β2 − 10α3 + 268α2β

+56αβ2 + 48β3 + α4 − 28α3β − 119α2β2 + 30α5 + 30α4β)x2

−2(α + β)2(15− 19α + 176β − 19α2 − 64αβ + 15α3)x

+(α + β)ζ(α, β) = 0,

and

ζ(α, β) = 64β3 − (15α2 + 258α− 465)β2 + (60α3 − 18α2 − 180α + 90)β

−α2(5α− 3)(3α− 5).
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We have that

• ψ(−∞) = +∞, ψ(0) > 0 if (α, β) ∈ a, c, d, f ; ψ(0) < 0 if (α, β) ∈ b, e.

• ψ(0) = 0 if (α, β) ∈ L1, L2, C3, C4 (on the boundaries of the above sub-

regions).

• For x < 0 and (α, β) ∈ [Ω1 ∪ Ω2], if ψ(x) = 0 than ψ′(x) 6= 0.

• By using the above information and the variation argument.

• The behavior of ψ(x) for (α, β) ∈ C2 is shown in Fig 6.
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xxx xx

ψ(x)ψ(x)
ψ(x)

ψ(x)

ψ(x)

α < −4 α = −4 −4 < α < −3 α = −3 −3 < α < 0

00

0
0

0

Fig 6. The behavior of ψ(x) for x ≤ 0, (α, β) ∈ C2 and α < 0.

1
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Step 4: the canard point is at (a, F (a))

In this caseCF has two minimum at (0, 0) and (b, F (b)), two maximum at (a, F (a))

and (1, F (1)). We classify CF to following 11 cases, corresponding to 11 subre-
gions in D = {(a, b) | 0 < a < b < 1}, see Fig 7.

(1) F (b) > 0,F (1) > F (a);

(2) F (b) > 0,F (1) = F (a);

(3) F (b) > 0,F (1) < F (a);

(4) F (b) = 0,F (1) > F (a);

(5) F (b) = 0,F (1) = F (a);

(6) F (b) = 0,F (1) < F (a);

(7) F (b) < 0,F (1) > F (a);

(8) F (b) < 0,F (1) = F (a);

(9) F (b) < 0, 0 < F (1) < F (a);

(10) F (b) < 0,F (1) = 0;

(11) F (b) < 0,F (1) < 0.
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B3

B4

B5
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A2
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0

0

0
0

0
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C1
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C3 C3
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4

C2
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4
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C5

S S

C7

C6 C6

1

1

1

1

P

Q

1

2

2

2

3

4

4

D∗

(a) The partition of D by {Cj} (b) Numbers N [(0, b)] in open regions

Fig 7. Partition of D : 0 < a < b < 1 and distribution of N [(0, b)].
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A B
C

D E

oror

F G

Fig 8. Some shapes of slow-fast cycles containing (a, F (a)) as a canard point.

Remark: we leave the two layers case for further study.

1
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(a) (b) (c)

(d)

or
oror

or

(e) (f)

(g) (h) (i)

Fig 9. Some shapes of slow-fast cycles without canard point.

1
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THANK YOU VERY MUCH!


